Algorithms for Chow-Heegner points via iterated integrals

نویسندگان

  • Henri Darmon
  • Michael Daub
  • Sam Lichtenstein
  • Victor Rotger
چکیده

Let E/Q be an elliptic curve of conductor N and let f be the weight 2 newform on Γ0(N) associated to it by modularity. Building on an idea of S. Zhang, an article by Darmon, Rotger, and Sols describes the construction of so-called Chow-Heegner points, PT,f ∈ E(Q̄), indexed by algebraic correspondences T ⊂ X0(N) × X0(N). It also gives an analytic formula, depending only on the image of T in cohomology under the complex cycle class map, for calculating PT,f numerically via Chen’s theory of iterated integrals. The present work describes an algorithm based on this formula for computing the Chow-Heegner points to arbitrarily high complex accuracy, carries out the computation for all elliptic curves of rank 1 and conductor N < 100 when the cycles T arise from Hecke correspondences, and discusses several important variants of the basic construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STARK POINTS AND p-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE

Let E be an elliptic curve over Q, and let %[ and %] be odd two-dimensional Artin representations for which %[ ⊗ %] is self-dual. The progress on modularity achieved in recent decades ensures the existence of normalized eigenforms f , g, and h of respective weights two, one, and one, giving rise to E , %[, and %] via the constructions of Eichler and Shimura, and of Deligne and Serre. This artic...

متن کامل

CHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES AND VALUES OF p-ADIC L-FUNCTIONS

Introduction 1 1. Basic notions 6 1.1. Motives for rational and homological equivalence 6 1.2. Algebraic Hecke characters 7 1.3. The motive of a Hecke character 8 1.4. Deligne-Scholl motives 9 1.5. Modular parametrisations attached to CM forms 10 1.6. Generalised Heegner cycles and Chow-Heegner points 13 1.7. A special case 15 2. Chow-Heegner points over Cp 15 2.1. The p-adic Abel-Jacobi map 15...

متن کامل

The rationality of Stark-Heegner points over genus fields of real quadratic fields

We study the algebraicity of Stark-Heegner points on a modular elliptic curve E. These objects are p-adic points on E given by the values of certain p-adic integrals, but they are conjecturally defined over ring class fields of a real quadratic field K. The present article gives some evidence for this algebraicity conjecture by showing that linear combinations of Stark-Heegner points weighted b...

متن کامل

Iterated Integrals and Algebraic Cycles: Examples and Prospects

The goal of this paper is to produce evidence for a connection between the work of Kuo-Tsai Chen on iterated integrals and de Rham homotopy theory on the one hand, and the work of Wei-Liang Chow on algebraic cycles on the other. Evidence for such a profound link has been emerging steadily since the early 1980s when Carlson, Clemens and Morgan [13] and Bruno Harris [40] gave examples where the p...

متن کامل

Numerical computation of Chow-Heegner points associated to pairs of elliptic curves∗†

In this paper, we consider a special case of Chow-Heegner points that has a simple concrete description due to Shouwu Zhang. Given a pair E, F of nonisogenous elliptic curves, and surjective morphisms φE : X0(N) → E and φF : X0(N) → F of curves over Q, we associate a rational point P ∈ E(Q). We describe a numerical approach to computing P , state some motivating results of Zhang et al. about th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015